热搜词: 

什么是碳质球粒陨石,碳质球粒陨石为何如此珍贵

发布:小编

本文目录

陨石的类型和化学组成

在阿波罗飞船登月之前,陨石是人类惟一能直接观测的地球之外的固态物体。已发现陨石的质量可从几克到数吨。陨石主要来自火星和木星之间的小行星带和彗星。火星和月球陨石已有少量发现。对陨石的研究为测定太阳系的化学组成和演化提供了可以直接观测的物证。

(一)陨石的类型

陨石主要由铁、镍金属和硅酸盐组成,根据陨石中铁、镍金属含量将陨石划分为三类:

地球化学原理(第三版)

铁陨石(siderite):主要由铁纹石和镍纹石两种矿物组成。其镍的质量分数为4%~30%。除金属矿物外,还有少量副矿物,如陨硫铁(FeS)、磷铁镍钴矿及石墨等。

铁-石陨石(siderolite):由大致等体积的硅酸盐相和铁镍相组成。

石陨石(Aerolite):主要由硅酸盐矿物组成。根据是否含球粒可分为球粒陨石和无球粒陨石两个亚类。

球粒陨石(Chondrite):是各类陨石中最常见的陨石类型。其最大特点是具有球粒构造。球粒一般由橄榄石和斜方辉石组成,球粒间的基质常由镍铁、陨硫铁、斜长石、橄榄石、辉石等组成。

无球粒陨石硅酸盐相达98%以上,几乎不含金属相。陨石的结构表明,无球粒陨石、铁陨石和铁石陨石都经历过岩浆演化过程。

在已发现的陨石块体中还见有玻璃陨石。玻璃陨石是陨落过程中,陨石与大气摩擦高温熔化的产物,其熔化程度和结构可做判断陨落速度和边部温度的信息。

(二)陨石的化学组成

由于陨石具有不同的类型,各类陨石的化学组成有明显的差异。

石陨石、铁陨石和陨石的平均化学组成列于表1-21。铁-石陨石的化学组成介于铁陨石和石陨石之间。从表中可以看出,组成陨石的主要元素是氧、铁、硅和镁,它们占陨石总质量的90%以上。

表1-21 陨石的平均化学组成(wB/%)
陨石金属相、硫化物相和硅酸盐相的主要化学元素见表1-22。从表中可知,金属相中除主要为Fe、Ni外,其次是Co和P。硫化物相主要为Fe、S、P。硅酸盐相则富集O、Si、Al、Mg、Ca、Na、K、Ti、Cr等亲石和亲氧元素。

表1-22 不同陨石相的主要元素组成(wB/%)
球粒陨石是已发现的陨石中数量最多的陨石。球粒陨石的平均化学成分列于表1-23。

表1-23 球粒陨石的平均化学成分(不包括S、H、C、O)
碳质球粒陨石是一种罕见的特殊陨石类型,一般认为,碳质球粒陨石是太阳系中初期形成的陨石。碳质球粒陨石中的非挥发性组分,(如Fe、Si、Mg、Al、Ca等)代表了太阳星云的平均化学成分,其元素丰度同太阳中所观察到的非挥发性元素丰度几乎完全一致,因此碳质球粒陨石的化学成分被用于估算太阳系非挥发性元素的丰度。碳质球粒陨石中还发现有有机物,如氨基酸、卟啉、烷烃、芳香烃等,这对探索生命前期有机质的合成、化学演化和地球生命的起源提供了重要依据。

碳质球粒陨石密度

2.0至3.7克/立方厘米之间。碳质球粒陨石是一种特殊类型的陨石,其中含有丰富的有机化合物和水合矿物,碳质球粒陨石的密度大约在2.0至3.7克/立方厘米之间。

陨石的主要组成部分是哪些

陨石主要是由镍-铁合金、结晶硅酸盐或两者的混合物所组成,按成分分为三类:

1)铁陨石(siderite):主要由金属Ni、Fe(占98%)和少量其他元素组成(Co、S、P、Cu、Cr、C等)。

2)石陨石(aerolite):主要由硅酸盐矿物(橄榄石、辉石)组成。这类陨石可以分为两类,按它们是否含有球粒硅酸盐结构,分为球粒陨石和无球粒陨石。这些陨石大都是石质的,但也有少部分是碳质的。碳质球粒陨石是球粒陨石中的一个特殊类型,由碳的有机化合分子和主体含水硅酸盐组成。它对探讨生命起源和太阳系元素丰度等各方面具有特殊的意义。由于阿伦德(Allende)碳质球粒陨石(1969年陨落于墨西哥)的元素丰度几乎与太阳气中观察到的非挥发性元素丰度完全一致,因此碳质球粒陨石的化学成分已被用来估计太阳系中非挥发性元素的丰度。

3)

铁石陨石(sidrolite):由数量上大体相等的Fe-Ni和硅酸盐矿物组成,是上述两类陨石的过渡类型。

球粒陨石

具有独特的球粒结构的石陨石成为球粒陨石;除H、He和其他挥发成分外,其化学成分最接近于太阳的成分。球粒陨石中常含有大量毫米级球粒。但球粒陨石的术语可以应用于任何成分与太阳接近的陨石,I型碳质球粒陨石虽然没有球粒,也归类于球粒陨石之中。

球粒陨石 被认为是 原始太阳星云凝聚产生的最原始的物质 ,各种球粒陨石在化学、矿物学、岩石学、同位素成分等方面有很大的差别,表明它们经历了不同程度的变质作用改造,与原始太阳星云物质产生了不同程度的偏离。

球粒陨石主要由4种组分构成,即: 球粒 、Fe-Ni金属富钙-铝的 难熔包体 (Ca-Al-rich inclusions,简称CAIs)和似变形虫状 橄榄石集合体 (amoeboid olivine aggregates,简称AOAs)及 细粒基质 。 一般学者认为球粒、金属和难熔包体是在太阳星云内的高温作用(凝聚作用,蒸发作用)形成的 ,随后许多CAIs、大多数球粒和Fe-Ni金属在其多期加热过程中发生过熔融,基质、一些CAIs和一些球粒陨石(CH及CB球粒陨石)中的金属似乎逃避了这些高温星云事件,虽然大多数球粒陨石在其母体小行星上经受过热的事件(水的蚀变、热变质和冲击变质),但它们未受到熔融和火成分异作用,因此,它们保存了太阳星云内物理和化学作用的记录。

球粒陨石的特征是具有球粒。球粒大部分呈球形或准球形,主要由硅酸盐组成。球粒的直径为0.1mm至20mm以上,平均直径为1mm。在矿物成分上,球粒主要由 橄榄石 、 辉石 或二者混合构成,此外尚有斜长石、石英、玻璃、陨流铁、金属Ni-Fe以及这些矿物组合而成。因此从矿物组成上可分为 单矿物球粒、多矿物球粒 和 玻璃球粒 。另外,按结晶程度和结晶形态可分为玻璃球粒、骸晶球粒、结晶球粒。

球粒陨石是最常见的陨石,其化学成分有明显差异,球粒陨石的化学分类反映了陨石之间的原生差异。根据陨石中TFe/SiO2比值,Feº/TFe比值,橄榄石成分和SiO2/MgO壁纸等化学参数,球粒陨石可划分为三类 五个化学群 :碳质球粒陨石(C群)、顽火辉石球粒陨石(E群)和普通球粒陨石(H、L、LL群)。

按化学成分区分,球粒陨石有以下类型:

碳质球粒陨石(占所有球粒陨石的3.5%)

普通球粒陨石(占所有球粒陨石的95%),再细分为:

H球粒陨石(占所有球粒陨石的44%)

L球粒陨石(占所有球粒陨石的38%)

LL球粒陨石(占所有球粒陨石的13%)

E球粒陨石顽火辉石球粒陨石 (占所有球粒陨石略多于1%)

R球粒陨石Rumuruti (罕有)

K球粒陨石Kakangari (罕有)

F球粒陨石Forsterite (罕有)

顽火辉石球粒陨石是还原性最强的球粒陨石,而碳质球粒陨石氧化性最强,几乎不含金属铁,甚至出现三价铁(磁铁矿Fe3O4),普通球粒陨石介于两者之间。

L群陨石的Ni/Fe比值低于0.3,金属铁对全铁的比值为0.2-0.5,而LL群的金属铁含量甚微,Ni/Fe比值高于0.4,金属铁与全铁的比值一般为0.04-0.11。

球粒陨石的岩石学分类反应陨石形成过程和形成之后经历的变化。根据矿物学和岩石学特征,球粒陨石可以划分为 7种岩石类型 ,代表7种不同程度的变质作用。岩石类型越高,所经历的变质程度越高,变质再结晶作用越明显,矿物、化学和同位素的平衡程度越高。

第1~2型: 受到液态水蚀变作用,球粒不明显。水的来源可能是陨石上的冰晶被加热至0 以上时融化(水蚀变较轻微的第2型),或是含水的硅酸盐在摄氏数百度因脱水而产生(水蚀变较严重的第1型)。

第3型: 是基础形态,陨石与原始状态差异不大。易于看到大量原始的球粒。而且陨石拥有较高含量的挥发性物质(包括惰性气体和水),这类陨石从未加热至超过400~600 ,与原始太阳星云物质最为相近。

第4~6型: 受到热变质影响,数字越大球质越不明显,而且惰性气体和水含量比1~3型少得多。这类陨石有可能曾埋藏于母天体深处,在被吸积后数百万年内受放射物质加热,温度可能达600~950

第7型: 受热变质严重影响,虽然陨石保留了原来的化学成分,但球粒已不可见。有理论认为这些是向无球粒陨石过渡的类型。

但没有一种类型的球粒陨石曾遭受足以引致熔融的加热,只有少数罕有的角砾化球粒陨石曾经历撞击而出现部分熔融。

球粒陨石的研究具有重要意义, 其一, 球粒陨石的组成与太阳光谱成份一致,而与地球表面和非球粒陨石完全不同,因此它可能代表着原始太阳的组成; 其二, 球粒陨石的形成年龄(4.6Ga)比任何地球、月球的岩石都要老,为月球、地球和太阳年龄对比提供了依据; 其三, 其岩石学特征明显与任何已知的行星过程不一致。球粒陨石的“岩石学类型”也是一个广泛用于指示热变质程度的参数,在陨石及其母体小行星研究中常指示封闭温度或峰值温度。球粒陨石由金属颗粒(Fe、Ni合金),陨硫铁(FeS)和硅酸盐以基质和球粒的形式组成:球粒是由毫米大小的硅酸盐聚集而成,且在形成陨石之前便已存在。这种不同物质的混合,并具微细结构,显然不是星云过程的产物,而是一种宇宙沉积的形式。球粒是大多数球粒陨石群的主要组成物质,在未变质的普通球粒中大约占70%~75%体积比,其成因并不清楚,普遍认为球粒形成于太阳星云中的瞬间熔融,也有人认为是凝聚等其它成因,球粒的组成研究也可提供星云加热事件的信息。

以上就是关于什么是碳质球粒陨石,碳质球粒陨石为何如此珍贵的全部内容,以及什么是碳质球粒陨石的相关内容,希望能够帮到您。

大家都在看

查看更多综合百科