热搜词: 

函数连续的充要条件,函数连续的条件

发布:小编

本文目录

函数连续的条件

1、充分条件:若函数f(x)在x0可导或可微(或者更强的条件),则函数在x0连续。

2、必要条件:若函数f(x)在x0无定义、或无极限、或极限不等于函数值,则在x0不连续。

3、若函数f(x)在x0有定义,且极限与函数值相等。则函数在x0连续。

4、连续函数的法则:定理一:在某点连续的有限个函数经有限次和、差、积、商(分母不为0) 运算,结果仍是一个在该点连续的函数。定理二:连续单调递增 (递减)函数的反函数,也连续单调递增 (递减)。定理三:连续函数的复合函数是连续的。

函数连续的充要条件,函数连续的条件图1

函数连续的充要条件是什么

解:

x→0+

lim|sinx|=limsinx=0=sin0

x→0-

limsinx=lim-sinx=0=sin0

左右都连续.所以连续

x→0+

lim(|sinx|-|sin0)|/(x-0)=limsinx/x=1

x→0-

lim(|sinx|-|sin0)|/(x-0)=lim-sinx/x=-1

左右导数不等,所以不可导。

连续性:y在X的领域内处有定义,而且y在X趋向于0时极限存在,而且极限值等于y在X=0的值。证明极限存在,要看左右极限是否存在且相等,像这函数,左右极限都存在,且都等于0,而且极限值等于函数值。

可导性:先对函数进行求导,再求其在X=0处左右极限是否存在且相等,如果不存在,则不可导,如果存在可是不相等,也不可导。

函数连续的充要条件,函数连续的条件图2

扩展资料

函数的连续性:

在定义函数的连续性之前先了解一个概念——增量设变量x从它的一个初值x1变到终值x2,终值与初值的差x2-x1就叫做变量x的增量,记为:△x即:△x=x2-x1增量△x可正可负。

设函数在区间[a,b)内有定义,如果右极限存在且等于,即:=,那么就称函数在点a右连续。一个函数在开区间(a,b)内每点连续。

则为在(a,b)连续,若又在a点右连续,b点左连续,则在闭区间[a,b]连续,如果在整个定义域内连续,则称为连续函数。

注:一个函数若在定义域内某一点左、右都连续,则称函数在此点连续,否则在此点不连续。注:连续函数图形是一条连续而不间断的曲线。

连续的充要条件是什么

判断函数f(x)在x0点处连续,当且仅当f(x)满足以下三个充要条件:

1、f(x)在x0及其左右近旁有概念。

2、f(x)在x0的极限存在。

3、f(x)在x0的极限值与函数值f(x0)相等。

函数连续的充要条件,函数连续的条件图3

简介

所有多项式函数都是连续的。各类初等函数,如指数函数、对数函数、平方根函数与三角函数在它们的定义域上也是连续的函数。

绝对值函数也是连续的。定义在非零实数上的倒数函数f= 1/x是连续的。但是如果函数的定义域扩张到全体实数,那么无论函数在零点取任何值,扩张后的函数都不是连续的。

函数连续的充要条件

函数在某点可导的充要条件是函数在该点的左右极限都存在且相等。 也可以说是左导数和右导数都存在且相等。

左极限就是函数从一个点的左侧无限靠近该点时所取到的极限值,且误差可以小到我们任意指定的程度,只需要变量从坐标充分靠近于该点。

右极限就是函数从一个点的右侧无限靠近该点时所取到的极限值,且误差可以小到我们任意指定的程度,只需要变量从坐标充分靠近于该点。

函数连续的充要条件,函数连续的条件图4

扩展资料

所有多项式函数都是连续的。各类初等函数,如指数函数、对数函数、平方根函数与三角函数在它们的定义域上也是连续的函数。

绝对值函数也是连续的。

定义在非零实数上的倒数函数f= 1/x是连续的。但是如果函数的定义域扩张到全体实数,那么无论函数在零点取任何值,扩张后的函数都不是连续的。

非连续函数的一个例子是分段定义的函数。例如定义f为:f(x) = 1如果x> 0,f(x) = 0如果x≤ 0。取ε = 1/2,不存在x=0的δ-邻域使所有f(x)的值在f(0)的ε邻域内。直觉上我们可以将这种不连续点看做函数值的突然跳跃。

以上就是关于函数连续的充要条件,函数连续的条件的全部内容,以及函数连续的充要条件的相关内容,希望能够帮到您。

大家都在看

查看更多综合百科